
A Task-Analytic Approach to the Automated
Design of Graphic Presentations

STEPHEN M. CASNER

University of Pittsburgh

BOZ is an automated graphic design and presentation tool that designs graphics based on an
analysis of the task for which a graphic is intended to support. When designing a graphic, BOZ
aims to optimize two ways in which graphics help expedite human performance of information-
processing tasks: (1) allowing users to substitute simple perceptual inferences in place of more
demanding logical inferences, and (2) streamlining users’ search for needed information. BOZ
analyzes a logical description of a task to be performed by a human user and designs a provably
equivalent perceptual task by substituting perceptual inferences in place of logical inferences in
the task description. BOZ then designs and renders an accompanying graphic that encodes and
structures data such that performance of each perceptual inference is supported and visual
search is minimized. BOZ produces a graphic along with a perceptual procedure describing how
to use the graphic to complete the task, A key feature of BOZ’S approach is that it is able h
design different presentations of the same information customized to the requirements of
different tasks, BOZ is used to design graphic premntations of airline schedule information to
support five different airline reservation tasks. Reaction time studies done with real users for
one task and graphic show that the BOZ-designed graphic significantly reduces users’ perfor-
mance time to the task. Regression analyses link the observed e~ciency savings tn BOZS two
key design principles: perceptual inference substitutions and pruning of visual search.

Categories and Subject Descriptors: D.2, 2 [Software Engineering: Tools and Techniques– user
interfaces; H. 1.2 lJtIodelsand Principles]: Ueer /Machine Systems —h man information pro-
cessing; 1.2.1 [Artificial Intelligence]: Applications and Expert Systems; 1.3.6 [Computer
Graphics] Methodology and Techniques—ergonomics

General Terms: Algorithms, Design, Human Factors, Theory

Additional Key Words and Phrases: Automated design, graphic design, graphic user interface,
task analysis, visual languages

1. THE COGNITIVE UTILITY OF GRAPHIC PRESENTATIONS

Studies of people using graphics for the purpose of solving problems or
performing information-processing tasks find little evidence to support the
claim that graphics are superior to other types of presentations such as

This work was supported by the OffIce of Naval Research, University Research Initiative, under
Contract NOO014-86-K-0678, and is based on parts of the author’s Ph.D. dissertation, Intelligent
Systems Program, University of Pittsburgh.
Author’s address: S. M. Casner, NASA Ames Research Center, Mail Stop 262-4, Moffetfield,
Calif., 94035-1000. e-mail: Internet: casner@eos,arc. nasa.gov
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1991 ACM 0730-0301/90/0400-0111 $01.50

ACM Transactions on Graphics, Vol. 10, No, 2, April 19S1, Pages 111-151.

112 . S. M. Casner

tables, lists, outlines, or text [19]. This is in striking contrast to the popular
belief that graphics are the preferred medium for information presentation.
These studies do not reject our intuitions about the usefulness of graphics but
rather find that the utility of any information presentation is a function of
the task that the presentation is being used to support. Graphics appear to
succeed in practice when they have been designed to directly support a
specific task, the success arising out of a judicious combination of task to be
performed and particular graphic used. Generalizations made about the
observed usefulness of a graphic for one task are highly inappropriate since
using the same graphic for different tasks often causes the usefulness of the
graphic to disappear. These results further suggest that graphic design
principles that do not take into account the nature of the task to be supported
(e.g., “line graphs are best for continuous data”) are too underspecified to be
useful in general. That is, empirical studies have shown that line graphs are
supportive of some tasks that manipulate continuous data and are detrimen-
tal to the performance of others. The implication is that effective graphic
design should begin with the task that a graphic is intended to support and
be focused on finding those parts of the task, if any, that might be performed
more efficiently within the context of a graphic.

Psychological studies concerned with how and why graphics are useful
demonstrate two task-specific ways in which graphics can help expedite
human performance of information-processing tasks [24, 341.

(1) Computation. Graphics sometimes allow users to substitute quick
perceptual inferences in place of more difficult logical inferences. Perceptual
inferences such as distance and size determinations, spatial coincidence
judgments, and color comparisons, allow users to obtain the same informa-
tion as more demanding logical inferences such as mental arithmetic or
numerical comparisons.

(2) Search. Graphics sometimes reduce users’ search for needed informa-
tion by grouping related information in a single spatial locality, and by
employing encoding techniques such as color, shading, and spatial arrange-
ment that support preattentive and sometimes parallel visual search.

The following examples present combinations of tasks and graphics to
illustrate the task-specific advantages that graphics can offer. The examples
demonstrate two important consequences of the task-dependent usefulness of
graphics. First, different presentations of the same information best support
diflerent tasks. That is, there is no such thing as the “most effective” way to
display a data set. Graphic designs fall in and out of usefulness depending on
the task a user wishes to perform using a data set. Consequently, there
seems to be no way of designing an effective presentation without first
considering the task for which the presentation will be used. Second, what
makes a presentatwn interesting are the eficient perceptual procedures that
users can perform using the presentatwn to quickly arrive at a &sired result.
In the examples below, the graphic designed for each task greatly simplifies
the task by reducing the amount of cognitive work (computation and search)

ACM ‘l%ansactionson Graphics, Vol. 10, No. 2, April 1991

A Task-Analytic Approach to the Automated Design of Graphic Presentations

-.u$l.Arua

1 ~~

-., -
a .,

/

.;.

\

. ;., ..; .
1?

* (, ,! i. ,,,

. 113

Fig. 1. Graphic for specific layover task

the user must perform. To fully appreciate the task-specific advantages of
each graphic, try performing each different task with each different graphic.
The examples all pertain to the problem of using airline schedule information
to locate flights obeying certain criteria. Each different task imposes differ-
ent demands on the user, requiring the user to approach the same set of
information in different ways. The graphic presentation for each task was
designed by BOZ, the automated tool described throughout the paper.

(1) Schedule Specific Layover. Suppose you must travel from Pittsburgh
to Mexico City but have to keep an afternoon business appointment in
Albuquerque. Using the graphic in Figure 1 you can quickly locate your
appointment time along the horizontal axis and locate Albuquerque (ALB)
along the vertical axis. Running your fingers up and across the graphic to
find the intersection of these two positions, you can now look for two flights
that fall the closest to the right and to the left of the point of intersection.
Note that this graphic allows you to immediately access exactly those flights
that optimally satisfy your city and time constraints, reducing your search to
a minimum. This graphic also lets you quickly figure your total “downtime”
in the airport by simply judging the horizontal distance between the inside
ends of each flight, and to figure your total travel time by judging the
distance between the outer ends of each flight.

(2) Find Cheapest Flight. Suppose you wanted to find the cheapest flight
going from Chicago to Mexico City. Using the graphic in Figure 2 you can

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

114 ● S. M. Casner

Fig, 2, Graphic for find cheapest flight task.

locate Chicago (ORD) and Mexico (MEX) on the horizontal and vertical axes,
find the intersection of these positions, and choose the smallest circle present
at that location since the size of the circle representing each flight encodes
the airfare.

(3) Find Most Direct Route. Suppose you wanted to find the most direct
route between two cities, minimizing the number of takeoffs and landings.
Using the graphic in Figure 3 you can find your origin and destination cities
around the perimeter of the circle and perform a simple connect the dots task,
finding the shortest path between the two points. To be sure that the flights
connect you must compare the departure and arrival times of each leg of the
flight.

(4) ~ok Up Flight Information. Suppose you just wanted to know the
time or cost of a flight. The tabular presentation in Figure 4 lets you locate
your flight by city in the leftmost column and read off the required informa-
tion in the corresponding row. In this case the best graphic is no graphic! If
your task is to simply read the information, no encoding scheme is likely to
prove superior to text.

Overview. The research described in this paper explores an approach to
the design of graphic presentations based on an analysis of the tasks for
which they are intended to support. The design approach is implemented in
an automated graphic design and presentation tool called BOZ. BOZ designs
graphic presentations that are customized to the requirements of a stated
task. The core idea behind BOZ can be summarized as follows: since the

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 115

mz

Fig. 3. Graphic for find most direct route task

Fig. 4, Graphic for look up information task.

usefulness of a graphic presentation is a function of the task that the graphic
will be used to support, graphic design should focus on designing eficient
perceptual procedures to be performed by human users. Decisions made about
how to encode and structure information in an accompanying graphic should
be based primarily on supporting efficient and accurate performance of the

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

116 ● S. M. Casner

perceptual procedure. The enabling step in the task-analytic approach is to
capture the notion of a perceptual procedure performed by human users
within the context of a graphic presentation using the same formal
framework used to describe abstract computational processes, allowing de-
sign decisions to follow formal criteria.

Section 2 reviews previous work related to the problem of designing
graphic presentations. Section 3 overviews the five main components of BOZ
and introduces a running example used throughout the paper to describe
BOZ’S approach. Section 4 describes a language used to create logical descrip-
tions of user tasks that are submitted to BOZ as input, Section 5 shows how
alternative perceptual procedures can be derived from a logical description of
a user task by substituting perceptual inferences in place of logical inferences
when the logical and perceptual inferences can be shown to yield the same
result. Section 6 shows how an analysis of the relationships between task
inferences can be used to determine how information can be structured
within a graphic such that visual search is minimized when users perform a
perceptual procedure. Section 7 describes three criteria used by BOZ when
selecting a single perceptual procedure and graphic design that best supports
performance of the user’s task. Section 8 describes an automated rendering
component that transforms logical facts to graphical facts and displays them
on the screen. Section 9 analyzes the cognitive advantages of a perceptual
procedure and graphic designed by BOZ. The analysis produces a set of
specific hypotheses about the potential task performance efilciencies of the
BOZ-designed procedure and graphic. Finally, Section 10 reviews an experi-
ment reported in Casner and Larkin [8] in which participants performed a
BOZ-designed perceptual procedure using a series of accompanying BOZ-de-
signed graphics. Results show significant decreases in users’ performance
times and suggest that users obtained the eftlciency savings through the
hypothesized perceptual inference substitutions and visual search reductions.

2. PREVIOUS WORK

The following surveys theoretical and empirical work concerned with the
problem of designing effective graphics.

2.1 Graphic Design Practices

Tufte [32, 331, Bertin [2], Cleveland [10], and Schmid [28] present many
inviting examples of graphics and describe general graphic design practices.
These practices help designers to make use of graphic techniques that have
been observed to be useful and to avoid bad practices known to make
graphics ambiguous, confusing, or generally less usable. There are two basic
limitations of these works. First, since the works do not well articulate the
reasons why graphics succeed in practice, the graphic design practices pro-
vide little prescriptive information about how to design a graphic from
scratch. Stating that a graph “reveals” a data set in one case tells us little
about how to go about designing a graphic that reveals other data sets.
Second, the graphic design practices focus mainly on the information to be
presented in a graphic and include less concern for the tasks for which the

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 117

graphics are designed to support. This approach offers little guidance when
designing different graphics to support different tasks.

2.2 Automated Graphic Presentation Systems

APT [26] is an automated graphic presentation tool that designs static, 2D
presentations of relational information. A significant contribution of APT
was to formally characterize something to which many previous investigators
informally alluded. Graphic presentations can be expressed as sentences in
formal graphical languages that have the same precise syntax and semantics
as propositional formalisms. The advantage of having a formalism for graphic
presentations is that it provides a set of criteria for deciding the role of each
visible sign or symbol placed in a graphic and improves the integrity of a
graphic presentation by using formal methods for transforming logical facts
to graphical facts. APT’s style of analysis for formal graphical languages has
been used by nearly every graphic presentation tool designed after APT,
including the one described in this paper. A second contribution of APT is
that, unlike proposals for graphic design practices, APT designs graphics
with a minimum amount of intervention on the part of the designer; that is,
APT embodies a genuinely prescriptive theory of how to design a graphic.
However, APT’s design algorithm is based on an analysis of the information
to be presented and does not explicitly consider the task for which a graphic
is to be used. This prevents APT from directly exploiting the task-related
advantages of graphics and from creating different presentations of the same
information to support different tasks.

SAGE [271 is a hybrid, text, and graphics presentation system that gener-
ates explanations of changes that occur in quantitative modeling systems
such as project modeling and financial spreadsheets. Graphic presentations
are designed by SAGE in response to information queries made by the user.
Through an analysis of user queries, SAGE’s design of graphic presentations
is sensitive to the goals of the user, taking an important step toward
exploiting the task-related advantages of graphics. SAGE presently contains
only a small set of primitive problem-solving operators and is not able to
fashion presentations to support complex information-processing tasks in-
volving combinations of many primitive operators.

AIPS [361 accepts descriptions of information encoded using the KL-ONE
[31 knowledge representation language. AIPS matches the KL-ONE descrip-
tions against a set of predefine presentation formats and chooses that
format that best matches the characteristics of the data. AIPS is not able to
design novel graphic presentations.

BHARAT [161 accepts descriptions of data sets and chooses display formats
to present relations between the data. The presentation format chosen is
determined by the characteristics of the data: line charts are used for
continuous data, pie charts for proportional data, and bar charts for all
others. Like AIPS, BHARAT chooses among existing presentations rather
than designing new ones.

VIEW [15] creates graphic presentations of information about ships main-
tained in a naval database. VIEW’s knowledge base contains information

ACM Transactions on Graphics, VO1. 10, No. 2, April 1991.

118 ● S. M. Casner

about particular users, a set of tasks for the domain and a set of predefined
KL-ONE descriptions of possible presentation formats. By matching users’
identities, tasks, and queries against the presentation format descriptions,
VIEW is able to present different graphics in different contexts. As with
AIPS and BHARAT, VIEW does not design its presentation formats.

APEX [14] creates graphical explanations of actions performed with physi-
cal devices in a three-dimensional world. Explanations are created by pre-
senting sequences of static images depicting the individual steps in an action.
APEX uses hierarchical descriptions of the objects that can appear in an
explanation where each level in the hierarchy contains more detailed fea-
tures of the object. A second mechanism allows APEX to determine how
much detail is needed at each step and to display only that information.
Since the objects that appear in explanations are highly domain specific, they
must be hand created prior to using APEX.

2.3 Cognitive Research on the Utility of Graphic Presentations

Larkin and Simon’s [24] studied the utility of graphics from a cognitive
science perspective. Larkin and Simon built detailed cognitive simulations of
human task performance with each simulation performing a task using
equivalent logical and graphical representations of a set of data. Larkin and
Simon’s analysis yielded two ways in which graphic presentation-based
procedures could be performed more efficiently by humans: (1) by allowing
users to substitute quick perceptual inferences for more demanding logical
inferences, and (2) by reducing search for needed information.

Several more recent studies have investigated other cognitive utilities of
graphic presentations. Hegarty and Just [17] studied the use of diagrams in
understanding complex machines. Fallside [131 investigated how learners
make use of animated diagrams similar to those produced by Feiner’s APEX
program when understanding complex machines. Koedinger and Anderson

[231 examined the role of diagrams in geometry learning and instruction.
Many other cognitive advantages of graphics have been proposed. Graphics
appear to help improve recall for presented data, reduce short-term memory
loads during problem solving, provide information about the state of a
problem solution, help users organize their knowledge about a problem, and
increase motivation or user satisfaction. A future articulation of how these
advantages relate to specific graphic design features may allow them to be
incorporated in a prescriptive theory of graphic presentation design.

3. BOZ: AUTOMATED TASK-ANALYTIC DESIGN OF GRAPHIC PRESENTATIONS

The following describes a technique for designing graphic presentations of
relational information based on an analysis of the task that a graphic is
intended to support. The graphic design technique is articulated in an
automated graphic design and presentation tool called BOZ. BOZ focuses on
designing perceptual procedures, to be performed by human users, that allow
users to accomplish a stated goal more efficiently than they would be able to
without the benefit of a graphic presentation. BOZ’S task-analytic approach
uses the following five components.

ACM Transati]om on Graphics,Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 119

(1) A logical task description language allows the user of BOZ to describe
the information-processing task that she or he wishes to design a graphic to
support. This language is used to enumerate the individual problem-solving
steps (called logical operators) that are required for a user to complete a task
without the benefit of any information presentation. Logical task descrip-
tions must be prepared by hand and submitted to BOZ as input. The task
description language is also used to describe the information manipulated by a
task.

(2) A perceptual operator substitutwn component considers each operator
in a logical task description looking for ways to substitute perceptual opera-
tors in place of logical operators when the operators can be shown to produce
the same output given the same input. BOZ contains a catalog of perceptual
operators describing problem-solving steps performed within the context of a
graphic. Perceptual operator substitution is the mechanism used to stream-
line the in ferencing done by the human user when performing a task.
Several perceptual operators typically qualify as substitutes for each logical
operator, yielding a set of possible perceptual procedures.

(3) A perceptual data structuring component examines the information
manipulated by each logical operator and determines how information shared
by several operators should be collected together to form complex graphical
objects, and how unrelated information can be partitioned into distinct
presentations. Perceptual data structuring is one mechanism used to mini-
mize the amount of time the user spends searching for information in a
graphic. The perceptual data structuring component determines the optimal
grouping and distribution of information within a graphic. It does not deter-
mine how the information is to be perceptually encoded in the graphic.

(4) A perceptual operator selection component chooses a single perceptual
operator to substitute each logical operator in a task description. The first
criteria for perceptual operator selection is how efllciently and accurately
each perceptual operator is likely to be performed by human users. Selecting
each particular perceptual operator also decides the way that the information
manipulated by that operator must be perceptually encoded in a graphic. A
second criteria for operator selection is choosing a complete set of perceptual
operators that results in a set of graphical encodings that can be combined
according to the specification produced by the perceptual data structuring
component. The perceptual operator selection component yields a detailed
description of a single perceptual procedure and an accompanying graphic
design that supports the performance of the perceptual procedure.

(5) A rendering component translates logical facts into graphical facts and
displays them on the computer screen following the graphic design produced
by BOZ. Graphics produced by the rendering component support two-way
interactions that allow changes made in the internally stored logical facts to
be automatically reflected in the graphic presentation and direct manipula-
tions of the graphical objects in the presentation to be reflected in the
internal set of logical facts.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

120 . S. M. Casner

The next five sections describe the components of BOZ in detail. To
illustrate how BOZ works, a running example is developed throughout the
discussion. In the example, a graphic presentation is designed to support one
additional airline reservation task:

Find a pair of connecting flights that travel from Pittsburgh to
Mexico City. You are free to choose any intermediate city as long as
the layover in that city is no more than 4 hours. Both flights that
you choose must be available. The combined cost of the flights
cannot exceed $500. Find an available seat on each flight.

This task differs from the previous four reservation tasks in that the user
must now be concerned with obeying both time and cost constraints. We will
see that the requirements of this task lead BOZ to produce a graphic
presentation completely different from those designed for the four previous
reservation tasks.

4. LOGICAL TASK DESCRIPTION LANGUAGE

The first component of BOZ provides a means of describing the information-
processing activities that a graphic is intended to support. Task descriptions
must presently be prepared in advance and submitted to BOZ as input. 1
BOZ’S task description language contains two basic components: (1) a nota-
tion for describing logical procedures, and (2) a notation for expressing logical
facts manipulated by a logical procedure.

Logical procedure definitions are similar to programs in conventional
programming languages such as Pascal. Every logical procedure contains
three parts: (1) a set of domain set definitions; (2) a set of logical operator
definitions; and (3) a main body. Domain sets are the information types that
define the universe of discourse for a task. Domain sets consist of a name, a
type of information, and a (possibly inilnite) set of data values of that type.
Three types of domain sets are allowed by BOZ: quantitative, nominal, and
ordinal [30]. A logical operator (LOP) is composed of an operator name, a list
of arguments taken as input to the operator, and a single relation that the
operator computes. Logical operators occur in two forms. A search operator
uses one of the three meta-commands: ASK, TELL, and RETRACT to query,
assert, and remove logical facts from a simple database of logical facts.
Logical facts describe object-attribute-value relations and take the form:
((attribute) (object) (value)), where (attribute) names some property of (object),
and (value) is the property value. The arguments (object) and (value) in a
search operator may be instantiated or uninstantiated. Uninstantiated argu-
ments (i.e., variables that have not yet been assigned a value) are capital-
ized. Instantiated arguments are variables that were previously uninstanti -
ated but have since been assigned a value. Instantiated arguments appear in
lower case. A computation operator describes computations performed on a

li%tion 11 discusses prospects for automating the process by which users communicate their
tasks and goals to BOZ.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 121

set of arguments using one of a set of predefined arithmetic or logical
predicates: +, –, *, /, AND, OR, and NOT. Note that only instantiated
arguments may appear in a computation operator.

The following are two logical operators in the airline reservation proce-
dure. The two operators determine the departure time of an airline flight
(search) and the layover between two flights (computation), respectively:

(LOP determineDeparture ((flight) (DEPARTURE))
(ASK (Departure (flight) (DEPARTURE))))

(LOP computeLayover ({departure) (arrival) (LAYOVER)

(- (departure) (arrival} (LAYOVER)))

The keyword LOP is used to denote a logical operator. The lists ((flight}

(DEPARTURE)) and ((departure) (arrival) (LAYOVER)) are the sets of arguments
that the two operators receive as input, The ASK predicate states that a list of
facts should be checked to see if the relation that follows can be shown to be
true, namely, if there exists a fact expressing the departure time of the flight.
The relation (– (departure) (arrival)) specifies that the predefine subtraction
predicate is to be computed given the values (departure) and (arrival) and the
variable (LAYOVER) is to be instantiated with the result.

The main body of a logical procedure is an ordered sequence of calls to the
set of defined logical operators. To express control information, the main
body of a logical procedure may additionally contain any of the following
control constructs: while-do, for, repeat-until, and if-then.

To illustrate how logical procedures are described using the task language,
Figure 5 shows a complete procedure description for the airline reservation
task. 2 The procedure in Figure 5 assumes that there are no direct flights
from Pittsburgh to Mexico City.

Logical facts are used to describe relational information manipulated by a
logical procedure. Logical facts state relations between values drawn from
one or more domain sets. The airline reservation procedure manipulates
information from the domain sets specified in the top portion of Figure 5.
Figure 6 shows logical facts that describe a set of three airline flights.

5. PERCEPTUAL OPERATOR SUBSTITUTION

Perceptual operator substitution is the graphic design technique used to
insure that a graphic presentation best exploits the first task-specific advan-
tage of graphics: users can substitute efficiently performed perceptual infer-
ences in place of more demanding logical inferences. The perceptual operator
substitution component considers each logical operator appearing in a logical
procedure looking for ways of substituting perceptual operators in place of
logical operators when the logical and perceptual operators can be shown to
be equivalent. The perceptual operator substitution component produces a set

‘Note that there exist many variations of the procedure shown in Figure 5. The user might
alternatively start by searching for flights that terminate in Mexico City and work backwards,
or start by choosing an intermediate city and then searching for two flights that arrive from
Pittsburgh and leave for Mexico City.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

122 . S. M. Casner

(?ROC=DURZ
(let ((found nil))

(while (and found (findFlightWithOrigin FLIGHT ‘pit)) do
(if (available? flight ‘T) then

(f indDest inat ion flight LAYOVERCITY)
(detemineArrival flight ARRIVAL)
(while (and found (f indFlightWithOrigin CONNECTINGlayovercity)) do

(if (available? connecting ‘T) then
(findDestination flight FINALDESTINATION)
(if llandsInDestinat ionCity? finaldestination ‘msx) then

(determineDeparture connecting DEPARTURS)
(computeLayover departure arrival LAYOVER)
(if (and (connecting? departure arrival)

(layoverLesaThanX? layover ‘ 4)) then
(determineCost flight cOST1)
(detemineCost connecting COST2)
(addCosts costl c0st2 TOTAL)
(if (costLrssTh.rnX? total ‘ 500) then

(re~at
(find.se.rt flight SEAT1)

until (en@ySeat? seatl ‘T))
(findSeatNumber seiitl SEATNU141)
(repeat

(f indseat connect ing SEAT2)
until (WtySeat? seat2 ‘T))
(f indSeatNumber seat2 SEATNUM2)
(if (and seatl seat2)

(setq found t) 1

(DONAIMSZTS
(flight NOMINAL50)
(origin NOMINAL(pit hou dal ord .rlb msx gdl qto Paz @a))
(destination NOMINAL(pit hou dal ord alb msx gdl qto paz @a))
(departure QUANTITATIVE1440)
(arrival QUANTITATIVE1440)
(layover (departure arrival))
(cost 9UmTITATIVE 1000)
(availability NOMINAL(ok full))
(seat NOMINAL144)
(Seatn_l ORDINAL(1A lB lC ID lE IF . . . 24A 24B 24c 24D 24E 24F})

(OPERATORS
(LOP fin@lightWithOrigin (<FLIGHT><origin>)

(ASK (Origin <FLIGHT><origin>)))
(LOP findoestirmtion (<flight> <DESTINATIOtO)

(ASK (Destination <flight> <DESTINATION>)))
(LOP lands IoDestinationCity? (<destination> <destination>)

(- <destination> <destination>)))
(LOP available? (<flight> <availability>)

(ASK (Availability <flight> <availability>)))
(LOPdetemineDeparture (<flight> <DEPARTURE>)

[ASK (Departuze <flight> <DEPARTURE>)))
(LOP determineArri.al (<flight> <AirRIVAL>)

(ASK (Arrival <flight> <ARRIVAL>)))
(LOP comuteLayover (<departure> <arrival> <LAYOVER>)

(- <departure> <arrival> <LAYOVEFO)}
(LOP connecting? (<departure> <arrival>)

(> <departure> <arrival>))
(LQP layoverLeaaThanX? (<layover> <layover>)

(< <layover> <layover>))
(LOP detemineCost (<flight> <COST>)

(ASK (Cost <flight> <COST>)))
(LOP addCoata (<cost> <cost> <COST>)

(+ <cost> <cost> <COST>))
(LOP costLeaaThanX? (<cost> <cost>)

(< <coat> <cost>))
(LOP findSeat (<flight> <SEAT>)

(ASK (Seat <flight> <SEAT>)))
(LOP emptySeat? (<seat> <availability>)

(ASK (Availability <seat> <availability>)))
(LOP findSeatNur@ber (<seat> <SEATNU14BEm)

(ASK (Seatnurrber <seat> <SEATNUNBEFO))))

Fig.5. Logical airline reservation procedure.

ACM Transactions on Graphics, Vol. 10, No.2, April 1991

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 123

(origin flightl17 pit)
[origin flight 738 pit)
(origin flight839 pit)
(destination flightl17 hou)
(destination flight738 alb)
(destination flight839 jfk)
(availability flightl17 ok)
(availability flight738 ok)
(availability flight839 ok)

(cost flightl17 179)
(cost flight738 219)
(cost flight839 319)
(departure flightl17 10:OO)
(departure flight738 8:00)
(departure flight839 9:15)
(arrival flightl17 12:50)
(arrival flight738 12:00)
(arrival flight839 12:05)

Fig.6. Logical facts forairline reservation tasks

of perceptual operators that can potentially serve as substitutes for each
logical operator. Decisions about which particular perceptual operator to
substitute for each logical operator are subject to further design criteria
described infection 7.

Perceptual operator substitution relies on two important components: (l)a
catalog ofperceptual operators that describes information-processing activi-
ties that occur within the context of a graphic presentation; and (2) a
substitution algorithm that considers each logical operator in a task and
searches the catalog of perceptual operators for those perceptual operators
that compute the same function as the logical operator. Since there are often
several perceptual operators that qualify as substitutes fora logical operator,
the perceptual operator substitution component produces a set of possible
perceptual procedures equivalent to the logical procedure.

5,1 A Catalog of Perceptual Operators

Perceptual operators (POPS), analogous to logical operators, characterize
information-processing activities performed within the context of a graphic
presentation and whose performance depends on the useofa graphic presen-
tation. Perceptual operators describe perceptual inferences or visual search
performed using graphically expressed information. For example,judging the
distance between two objects in a graphic and locating an object having a
particular color are examplesof perceptual operators.

Perceptual operators are organized around a set of primitive graphical
languages available to the designer of agraphic presentation [261. Primitive
graphical Languages comprise thedesigner’s resources for encoding informa-
tion graphically. The set of primitive graphical languages usedby BOZ are
shown in Table I. The parenthesized numbers in Table I indicate an upper
limit on the number of distinct values that can be practically encodedin a
single graphic presentation using each primitive graphical language. Associ-
ated with each of the primitive graphical languages is a set of perceptual
operators that are admitted when the designer of a graphic presentation
elects to use one or more of the primitive languages in a graphic. For
example, if we elect to use the Horizontal Position language we admit a
family of perceptual operators (POPS) such as determining the horizontal
position ofa graphical object, comparing two or more horizontal positions,
and finding the midpoint ofan interval defined by two horizontal positions.

ACM’fYansactions on Graphics, Vol. 10, No.2, April 1991.

124 . S. M. Caener

Table 1. Primitive Graphical Languages

Horizontal Position (100) Cobr(12)
Vertical Position (100) Labels (M)
Height (50) Line Thickness (3)
Width (50) Line Dashing (2)
Line Length (50) Shape (5)
Area (10)
Shading (4)

Visibility (2)
Tabular (CO)

Connectivity (8)

Table II. Perceptual Operators (POPS)

Horizontal Position
determine-horz-pos
search -object –at-horz-pos
search-any-horz-pos-object
verify-object-at-horz-pos
horz-coincidence?
left-of?
right-of?
horz-forward-projection
horz-backward-projection
determi.ne-horz-distance

Shading
determine-shade
search-object-with-shade
search-object-and-shade
verify-object–and-shade
darker?
lighter?
same-shade?

Table II shows the set of perceptual operators admittedly the Horizontal
Position and Shading primitive graphical languages. It is interesting to
compare the perceptual operators associated with each primitive graphical
language. This exercise helps make explicit the task-specific usefulness of
each graphical encoding technique. Note the difference in the number of
computation operators supported by the Horizontal Position and Shading
primitive graphical languages. For instance, human users can easily deter-
mine the difference between two horizontal positions but are not generally
able to determine the difference between two shades.

Equivalence Classes for Perceptual Operators. Every perceptual operator
computes a function over relational information. An equivalence class of
perceptual operators is aset ofoperators that can be shown to compute the
same function over relational information. Table IHdescribese levenequiva-
Ienceclasees used to categorize the perceptual operators in the catalog. Every
perceptual operator in the catalog is classified under exactly one operator
equivalence class. Table IV shows the perceptual operators associated with

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 125

Table 111. Perceptual Operator Equivalence Classes

SEARCH OPERATORS
search:Given a graphical property, scareh a WL of objects for an object having that graphical pro~rty,
lookup: Given an object, dctcrminc a specific property of that object.
search and lookup: Search for any object and determine a spxificd property of that object.
verify: G ivcn an object and properfy, verify that the objczt has that property.

COMPUTATION OPERATORS
equal: Do two objects have the same graphical property?
less than: Does one object have a lower valued graphical property than another?
greaterthan:Dotsoncobjcc[havealowervaluedgraphicalproperty than another?
plus: Comptstcthe sum of two graphical propcrucs.
difference: Compute Lhcdifference of Iwo graphical propcrcies,
times: Compule the product of two graphical properties.
quotient: CompuLe the quotient of two graphical properties,

Table IV Members of Two Perceptual Operator Equivalence Classes

search
search -o bject-at-hor z-pos
search -object -at-vert–pos
search-object-with-height
search-object-with-width
search-line-with-length
search-object-with-area
search–connected-object
search-object-with- shading
search-object-with-color
search-object-with-label
search-line-with-th ickness
search-line–with-dashing
search-line-with-slope
search-object-with-shape
search-visible-object
search-entry-in-table

subtraction
determine-horz-distance
determine-vert-distance
determine-height-difference
determine-width-difference
determine-difference-in-line-length
determine–area-difference
subtract-labels
determine-slope-difference
subtract-table-entries

the search and subtraction equivalence classes. Perceptual operators are
formalized using the same notation used for logical operators. For example,
the search-object-with-shade search operator and determine-horz-distance com-
putation operator are defined as follows:

(POP search-object-with-shade ((OBJECT) (shade))
(ASK (Shading (OBJECT) (shade))))

(POP determine-horz-distance ((horzposl) (horzpos2) (DISTANCE))
(DIFFERENCE (horzposl) (horzpos2) (DISTANCE)))

ACM Transactions on Graphics, Vol. 10, No.2, April 1991.

126 . S. M. Casner

The search-object-with-shade operator searches for an object in a graphic
having a shade equal to the value of (shade) and instantiates the variable
(OBJECT) with the result. The determine-horz-distance operator determines
the distance between two objects located at {horzposl) and (horzpos2) in a
graphic and instantiates the variable (DISTANCE) with the result.

5.2 Substituting Operators

The formal characterization of logical and perceptual operators using equiva-
lent notations allows BOZ to design perceptual tasks that allow users to
accomplish the same results as a logical task submitted to BOZ as input. The
ultimate goal of BOZ is to arrive at that perceptual task that is equivalent to
the original logical task, and that is most easily and efficiently performed by
human users. To design a perceptual task, BOZ considers each logical
operator in a task description and searches the catalog of perceptual opera-
tors attempting to locate those POPS that can be shown to compute the same
function as a LOP. Insisting on operator equivalence insures that whatever
perceptual procedure is followed in place of a corresponding logical procedure,
it is guaranteed that the user will obtain the same results if the perceptual
procedure is performed correctly.

A perceptual operator qualifies as a substitute for a logical operator if and
only if the logical operator can be categorized in the same equivalence class
(see Table 111) as the perceptual operator. Categorization is determined by
attempting to match an LOP to an arbitrary member of an equivalence class.
If an LOP is successfully matched to a member of an equivalence class, all
perceptual operators in that class initially qualify as substitutions for the
LOP. For example, given the computel-ayover logical operator in the airline
reservation procedure:

(POP computeLsyover ((departure) (arrival) (LAYOVER))

(- (departure) (arrival) (LAYOVER)))

BOZ attempts to classify the LOP into each of the equivalence classes given
in Table 111 until a class is found or the set of classes is exhausted. The
computeLayover LOP can be successfully categorized into the subtraction
class of search operators. One member of the subtraction class is the
determine-horz-distance operator associated with the Horizontal Position lan-
guage and shown above. Since both operators compute the subtraction func-
tion and we can map the arguments of the LOP onto those of the POP, any
graphic that represents departure and arrival times as objects positioned
along a horizontal axis will always allow the user to perform the
determine-horz-distance operator and obtain the same answer produced by the
computel-ayover operator.

Figure 7 shows the classifications for the logical operators in the airline
reservation task. Each operator in the task can be categorized into a single
equivalence class. Consequently, a set of perceptual operators initially qual -
ify as substitutions for each logical operator in the task. For example, the list
of perceptual operators associated with the search equivalence class are
proposed as substitutions for the findFlightWlthOrigin and findSeat operators.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 127

findFlightWithOrigin (search)
findDestination (lookup)
landsInDestinationCity? (verify)
available? (verify)
determineDeparture (lookup)
determineArrival (lookup)
computeLayover (subtraction)
connecting? (greaterthan)
layoverLessThanX? (lessthan)
determineCost (lookup)
addCosts (addition)
costLessThanX? (lessthan)
findSeat (search)
emptySeat (verify)
findSeatNutier (lookup)

Fig. 7. Operator classifications for air-
line reservation task.

Similarly, the operators ofthe subtraction class match the description of the
computeLayover operator.

It is important to note that BOZ has not yet decided which perceptual
operator to choose in each case. Decisions about which perceptual operators
to match with each logical operator are subject to further constraints com-
puted by the perceptual data structuring and perceptual operator selection
components described in Sections 6 and 7. What BOZ has produced at this
stage is a space of perceptual procedures that may be selected according to
additional design criteria.

6. PERCEPTUAL DATA STRUCTURING

The perceptual data structuring component is the design technique usedto
implement the second type of cognitive advantage of graphic presentations:
graphics sometimes allow users to spend less time searching for needed
information. The perceptual data structuring component examines the infor-
mation required to perform each logical operator in a task. Two types of
analyses are performed using this information. First, by noting the domain
sets that each logical operator manipulates, BOZ determines what informa-
tion should appear in a graphic designed to support a task. Second, by
analyzing the relationships between the operators in a task in terms of the
domain sets ofinformation they manipulate, BOZ determines: (a)how infer-
mation shared by several operators should be collected in the same spatial
locality and graphically encoded using the same primitive graphical
language and(b) how information not shared among operators canbe parti-
tioned into distinct presentations, The perceptual data structuring compo-
nent produces a perceptual data structure specification that outlines the
presentations that will be used to support the task, the information that
should appear in each presentation, and how the informationis to regrouped
within each presentation. The perceptual data structuring component does
not decide how information istobe graphically encoded in the presentation.
These decisions are made by the perceptual operator selection component
(Section 7).

ACM Transactions on Graphics, Vol. 10, No. Z, April 1991

128 . S. M. Casner

[flight] x [origin]x [destination] x [availability] x [departure] x [arrival] x

[layover] x [cost] x [seat] x [seatnumber]

Fig. 8. Feature space for airline reservation task.

The remainder of the section describes a scheme that analyzes relation-
ships between operators by representing each operator as a vector defined
over the domain sets that the operator manipulates. Relationships between
vectors are determined by identifying common domain sets occurring in
vectors. A complete sketch of all relationships between vectors reveals how
information is to be collected together into graphical objects and partitioned
among presentations.

6.1 Operator Vectors

Recall that every task description is defined over a finite collection of domain
sets. When taken together, all of the domain sets used by a task description
form a feature space. A feature space is formally defined as the cross product
of all domain sets spanned by a task description. Figure 8 shows an example
of a feature space defined over the domain sets that pertain to the airline
reservation task.

Each logical operator in a task description computes a relation over one or
more domain sets in the feature space defined for that task. BOZ makes
explicit the domain sets relevant to each logical operator in a task description
using a construct called a vector, For every logical operator in a task, BOZ
generates a corresponding vector that indicates the domain sets of informa-
tion manipulated by that operator. There are two types of vectors that
correspond to the two types of logical operators: search vectors and computa -
tion vectors. A search vector contains the names of the two domain sets from
which the arguments of a search operator are drawn. The first element of a
search vector is treated as the ob~”ect,the second domain set as an attribute of
the object. For example, the findFlightWithOrigin logical operator defines the
vecton (flight ,origin), where flight is the object, and origin is the attribute. A
computation vector contains the names of all domain sets that appear as
arguments to the computation operator. For example, the computeLsyover

operator defines the vector: (departure, arrival,layover) since it manipulates
arguments drawn from these three domain sets. The complete set of vectors
defined by the logical operators in the airline reservation task are shown in
Figure 9.

6.2 Relationships Between Vectors

BOZ’S next step is to examine the relationships between the vectors in terms
of the domain sets they manipulate. There are four types of relationships
that can hold between vectors. BOZ determines relationships between vectors

ACM ‘lhmaactiona on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 129

flight —origin + flight — wat +

tllghl — des!lnatlon ~ saat — seatnumber*

destination+
seal — availability +

fl!ght — availability +
departure — arrival— layover~

departure— arrw’al +
layover — layover *

flight — departure+
coat +

fhght — arrival-
coat*

thght — COSt +

Fig. 9. Vectors for airline reservation task

by applying an ordered set of four rules to the complete set of vectors for a
task.

(1) Conjoint. Search vectors SI = (ol, al) and SZ = (oz, aJ are conjoint
when they contain common objects, 01 = Oz. For example, the vectors defined
by the determineDeparture and determineArrival operators are conjoint. Con-
joint vectors group together attributes that pertain to the same object.
Consequently, these attributes should be encoded in a single graphical object
in order to reduce eye movement over the presentation when searching for
that object and its attributes.

(2) Parallel. Search vectors SI = (ol, al) and Sz = (oz, aJ are parallel
when there exists a computation vector, c = (al, az), that contains both al
and az. Parallel vectors indicate that some computation operator requires
that two or more different objects (e.g., flight and seat) and their attributes
be coordinated in order to draw a particular inference. Consequently, both
objects should appear in the same graphic presentation and should be en-
coded using the same primitive graphical language. In the airline example,
none of the vectors are parallel.

(3) Orthogonal. Search vector Sz = (oz, az) is orthogonal to search vector
s, = (ol, al) if the attribute of Sz appears as the object in Sl, that is, o, = az.
In the airline example, the search vectors corresponding to the seat object are
orthogonal to the flight object vectors. Orthogonality indicates part-of rela -
tionships between objects. Domain sets manipulated by orthogonal vectors
should appear in separate nested presentations. That is, the user should be
able to view the part-of presentation by making an appropriate selection in
the first presentation. Note that it is possible for two vectors to be orthogonal
to each other.

(4) Disjoint. Search vectors SI and Sz are disjoint when they share no
common object or attribute. Disjoint vectors indicate that no computation
operator requires that two or more objects be coordinated to draw an infer-
ence. Information relevant to disjoint vectors should appear in different
presentations since the task does not require that the information be used
together. None of the airline search vectors are disjoint.

ACM TransactIons on Graphics, Vol. 10. No. 2, April 1991.

130 ● S. M. Casner

4
availability

I
sealnumber

I
seal
& flighl — origin — destination — departure — arrivat — cow — availability*

Fig. 10. Vector relationships for airline reservation task.

(NESTED (PRESENTATION (flight (Origin Destination Departure
Arrival Cost Availability))

(PF.ESENTATION2 (seat (Seat Availability))))

Fig. 11. Initial perceptual data structure s~cification forairline reservation task,

Applying the vector relationship rules to the vectors in Figure 9 yields the
arrangement shown in Figure 10. Since the vectors pertaining to origin,
destination, departure ,arrival, cost, and availability are conjoint, BOZcon-
strains them to be encoded in the same graphical object. Similarly, the
vectors pertaining to seat number and availability are conjoint and thus form
their own graphical object. The flight and seat vectors are not parallel since
the task does not require the user to coordinate information about flights and
seat (e, g., subtract seat number from arrival time). The seat vectors are
orthogonal to the flight vectors indicating that the seat object is a part of the
flight object. Hence, BOZ constrains the seat graphical objects to appear in a
separate presentation that is nested inside each flight box.

BOZ uses the vector relationships shown in Figure 10 to specifjr how
information will be grouped together into complex graphical objects and
distributed among distinct graphic presentations. The initial perceptual data
structure specification for the airline task is shown in Figure 11.

It is important to note that BOZ has not yet decided how facts about the
origin, destination, departure, etc., of a flight are to be encoded in the
graphic. That is, BOZ has not yet associated the names of primitive graphical
languages with the predicate names appearing in the perceptual data struc-
ture specification. Which primitive graphical languages to associate with
each predicate is determined by the perceptual operators selected to substi -
tute the logical operators in the task. Note that information about flight
numbers and layovers will not be encoded in any graphic. This has occurred
since information about flight numbers is never used in the task and facts
about layovers are produced as the results of the computeLayover computa-
tion operator.

7. PERCEPTUAL OPERATOR SELECTION

The perceptual operator selection component chooses a single perceptual
operator to substitute each logical operator from the list of possibilities

ACMTransactionsonGraphics,Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 131

generated by the perceptual operator substitution component. Selecting a
single perceptual operator to substitute each logical operator accomplishes
two things: (1) reduces the space of possible perceptual procedures to a single
perceptual procedure judged to be the most effective, and (2) allows BOZ to
design a single accompanying graphic that supports human performance of
the selected perceptual procedure.

Three important issues constrain the selection of perceptual operators.
First, since the goal is to arrive at a perceptual procedure that minimizes the
effort required to correctly complete a task, for each logical operator BOZ
seeks to choose that perceptual operator that is performed most efficiently
and accurately by human users. A first criteria for operator selection in-
volves estimating the relative performance efficiency and accuracy of the
perceptual operators. Second, recall that each perceptual operator is associ-
ated with a primitive graphical language that must be used to graphically
encode information manipulated by that operator. A second criteria when
selecting operators is that the representational power of the primitive graphi -
cal language associated with a candidate perceptual operator is sufilcient to
encode the logical facts manipulated by the operator. Third, recall that the
perceptual data structure specification produced by the perceptual data struc-
turing component constrains some domain sets of information to be repre-
sented in a single graphical object or using the same primitive graphical
language. A third criteria for operator selection is that the primitive graphi -
cal languages associated with the selected perceptual operators be combin-
able such that they result in coherent graphic presentations that agree with
the perceptual data structure specification for the task.

7.1 Human Performance Rankings for Perceptual Operators

The most important criteria when selecting a perceptual operator is choosing
that operator that allows the human user to obtain the results of the operator
most efficiently and accurately. To determine which of a set of perceptual
operators is likely to be the most performance effective, BOZ uses a two-tier
ranking system that is a generalization of the approach used in Mackinlay’s
APT program [261. The first tier ranks the equivalence classes for logical
operators in order of their relative difficulty. For instance, arithmetic opera-
tors require more effort to perform than lookup operators. Consequently,
arithmetic operators are always awarded the most efficient perceptual opera-
tors. The second tier ranks the perceptual operators within each perceptual
operator equivalence class. For instance, determining the horizontal distance
between two points on a scale is generally performed more efficiently and
accurately than determining the difference between two areas. Similarly,
searching for an object having a particular color is performed more efficiently
than searching for an object having a particular shape. An important obser-
vation is that the operators associated with each different primitive graphical
language best support different tasks. That is, it is impossible to say that any
one primitive graphical language is the most effective way to encode data in
a graphic, Primitive graphical languages too fall in and out of usefulness
with respect to the task to be supported.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

132 . S. M. Casner

Table V. Ranking of Perceptual Operators and Equivalence Classes

A. Class Rankings:
1. plus, difference, quotient, times 5. search and lookup
2. search 6. k)OkUP
3. less than, greeter than 7. verify
4. equal

B. Operator Rwrklnga:
SEARCH OPERATORS

search: (Visibility,HorzPos, VertPos, Shape, Connacfivity, Shading, Height, Wtdth, LineDashing,
LineLength, LineThickness, Labels, Area)

lookup, vorlfy, search and lookup: {Shading, Shape, Labels, Height, Width, LineDashing,
LineThickness, Oonnactivity, HorzPos, VertPoa, LineLength, Area, Visibility)

COMPUTATION OPERATORS
equal: {Labels, Shading, HorzPos, VertPos, Shape, LlneDashlng, Height, Width, LineThickness,

LineLength, Connectivity, VWilii, Area}
Iesathan, greaterthan: (Shading, HorzPos, VertPos, Height, Wdth, LineThickness, LineLength,

Labels, &wmcfivity, Shape, LineDashing, VIsiMhy,Area}
plus, tlmea: (Height, Wtih, LineLength, LineThiiness, HorzPos, VertPos, Labels, Connectivity,

Shading, LineDashing, Shape, Area}
difference, quotient: {HorzPos, VertPos, Height, Width, LineLength, LineThickness, Labels,

Oonnacfiviiy, Area, Shading, Shape)

BOZ’S perceptual operator rankings were generated using a combination of
two methods: (1) theoretical predictions based on a more fine-g-rained consid-
eration of each perceptual operator [5, 341, and (2) experimental observations
of human perceptual task performance [11, 12, 20, 31, 341. Table V shows the
rankings for perceptual operator equivalence classes and the rankings for the
perceptual operators in each class.

7.2 Expressiveness

The second criterion used during operator selection is that a selected percep-
tual operator must be associated with a primitive graphical language that is
powerful enough to encode the logical facts manipulated by that operator.
For example, even though the search-shaded-object is the most efficiently
performed search operator, it cannot be selected to substitute the find-
FlightWithOrigin logical operator since the number of different cities exceeds
the number of different shades. When a selected perceptual operator fails to
meet the expressiveness needs of a logical operator it is disqualified and the
next highest ranking perceptual operator is considered. The interested reader
can consult Mackinlay [261 for a thorough analysis of primitive graphical
language expressiveness. Like all other recent presentation systems, BOZ
adopts Mackinlay’s technique for deciding expressiveness.

7.3 Perceptual Operator Combinability

The third criterion for operator selection concerns the combinability of per-
ceptual operators. Suppose we have selected the stack-heights perceptual
operator to substitute the addCosts logical operator in the airline reservation

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 133

task and are currently selecting a perceptual operator to substitute the
findFlightWthOrigin operator. Suppose that we are currently considering the
determine-slope perceptual operator as a candidate selection. Recall that the
perceptual data structuring component has indicated that the information
relevant to these two operators should be encoded in the same graphical
object. Every perceptual operator has associated with it a graphical presenta-
tion object (defined below) that is used to graphically encode the information
manipulated by that object. For example, the graphical presentation object
for the stack-heights and determine-slope operators are (rectangle) and (line),
respectively. Note that the information relevant to the two operators cannot
be encoded in the same graphical object. That is, it is meaningless to speak of
the slope of a rectangle or the height of a line. Consequently, these two
operators are not combinable and we must disqualify determine-slope as a
candidate for selection. Now, suppose we move on and consider the read-label
perceptual operator. Note that the two operators are indeed combinable.
Even though the graphical presentation object for the read-label operator is
(label) and the graphical presentation object for the stack-heights operator is
(rectangle), the two graphical objects can be combined to form a labeled
rectangle.

The next two sections describe how the set of graphical presentation objects
and a set of graphical object composition rules are used by BOZ to decide
combinability y of perceptual operators.

7.3.1 Graphical Presentation Objects. Each primitive graphical language
has a graphical presentation object associated with it, either: (point), (line),
(rectangle), (polygon), or (label). The graphical presentation object for a
primitive graphical language is that graphical object that supports the
performance of the perceptual operators that are associated with that graphi-
cal language. For example, the graphical presentation object for the Height
primitive graphical language is (rectangle). Note that only this object makes
the perceptual operators associated with the Height language meaningful.
That is, it would be impossible to determine the height of a point or a line
since points and lines by definition have no height. 3 Table VI lists the
graphical presentation objects associated with each of the primitive graphical
languages. The first step in deciding perceptual operator combinability is to
determine the graphical presentation object of a candidate perceptual opera-
tor.

7.3.2 Cornposition Rules for Graphical Presentation Objects. The second
step in deciding operator combinability is to compare the graphical presenta-
tion object of the perceptual operator currently being considered with the
presentation objects of all previously selected operators that appear in the
same vector in the perceptual data structure specification. If the graphical
presentation object matches those of the previously chosen operators then the

‘In the case of the (line~ object, it is important not to confuse the notion of height with that of
line length for a vertically oriented line.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

134 . S. M. Caener

Table VI. Graphical Presentation Objects for the Primitive Graphical Languages

HorizontalPosition= <poinb Shading= <polygon>
Veitical Positiin = <poinb Labels = <label>
Heighl = <rectangle> Cobr = <point>
W~h = <rectangle> Line Th&ness = <line>
Line Length. <line> Line Dashing = <line>
Area = <polygon> Shape . <polygon>
Connecfiviiy = <line> Visibility = <poinb

new operator is combinable. If the presentation object does not match, BOZ
attempts to show them combinable using the set of composition rules for
graphical objects given in Table VII. Each composition rule describes how a
set of individual presentation objects can be legally composed to form a single
presentation object that inherits all of the graphical properties of the con-
stituent objects. For any new perceptual operator and set of previously
selected operators, the new operator is combinable if and only if a rule can be
found that maps the set of presentation objects into another legal presenta-
tion object.

Applying the perceptual operator selection strategy to the set of possible
perceptual operators obtained for the airline reservation procedure yields the
perceptual procedure shown in Figure 12. For each logical operator, BOZ has
selected the most eflicient available perceptual operator as a substitute
within the expressiveness and combinability y constraints. It is interesting to
note that the logical operator findFlightWithOrigin has been substituted by the
search-object-with-label, a very low-ranking perceptual operator. This example
illustrates how the expressiveness and combinability constrains operator
selection. A more appealing substitution for findFlightWithOrigin would have
been a perceptual operator in which the user locates a flight with a particular
origin by searching a horizontal scale or by searching for an object having a
particular shape. The reason that these two more attractive operators were
not selected is because the higher-ranking computel-ayover had already staked
claim to the Horizontal Position operators and the Shape primitive graphical
language unfortunately does not offer enough unique shapes to represent all
ten different possible cities of origin. Consequently, due to these constraints
imposed by the other competing operators, the findFlightWithOrigin operator
was relegated b the more difficult perceptual task of searching for a labeled
item.

Figure 13 shows the final perceptual data structure specification for the
airline reservation task after perceptual operators have been selected. Note
that each predicate appearing in the perceptual data structure specification
has been associated with a single primitive graphical language. In each case
the primitive graphical language chosen is precisely that language associated
with the perceptual operators that have been selected to manipulate that
type of information.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

D

T
ab

le
V

II
.

C
om

po
si

ti
on

R
ul

es
fo

r
G

ra
ph

ic
al

P
re

se
nt

at
io

n
O

bj
ec

ts

O
b

je
ct

C
o

m
p

o
si

ti
o

n
R

u
le

s:
A

xi
s

C
o

m
p

o
sl

tl
o

n
R

u
le

s:
R

U
L

E
1:

.q
m

in
b

+
q

in
b

=
cp

o
in

b
R

U
L

E
12

:
ch

o
rz

-a
xi

s>
+

<h
o

rz
-a

xi
s>

=
ch

o
rz

-a
xi

s>

R
U

L
E

2:
cp

o
in

b
+

A
in

e>
=

<l
in

e>
R

U
L

E
13

:
@

er
t-

ax
is

>
+

<v
er

t-
ax

is
>

=
cv

er
t-

ax
is

>

R
U

L
E

3:
<l

in
e>

+
.c

lin
e>

=
d

in
e>

R
U

L
E

14
:

<h
o

rz
-a

xi
s>

+
<v

er
t-

ax
is

>
=

cc
ar

t-
ax

is
>

R
U

L
E

4
cr

ec
ta

n
g

le
>

+
<p

o
in

t>
=

<r
ec

ta
n

g
le

>
R

U
L

E
5:

<r
ec

ta
n

g
le

>+
<r

ec
ta

n
g

le
>=

<r
ec

ta
n

g
le

>
R

U
L

E
6:

q
xJ

yg
o

@
+

q
o

in
b

=
q

o
ly

g
o

-
R

U
L

E
7:

q
o

ly
g

o
n

>
+

<p
o

ly
g

o
n

>
=

.q
rd

yg
o

n
>

R
U

L
E

8:
cl

ab
ei

>
+

c
la

b
e

l>
.

<l
ab

el
>

R
U

L
E

9:
cl

ab
eb

+
cl

in
e>

=
<l

in
e>

R
U

L
E

10
:

<l
ab

el
>

+
cr

ec
ta

n
g

le
>

=
<r

ec
ta

n
g

le
>

R
U

L
E

11
:

<I
ab

ek
+

<p
o

ty
g

o
n

>
=

<p
o

ly
g

o
n

>

. 6) u
!

136 . S. M. Casner

(let ((looking t))
(while (and looking (search-object-with-label FLIGHT “pit)) do

(if (shaded? flight) then
(read-label flight LAYOVZRCITY)
(determine-horz-pos flight ARRIVAL)
(while (and looking (search-object-with-label CONNECTINGlayovercity)) do

(if (shaded? connecting) then
(read-label flight FINALDESTINATION)
(if (same-labels? finaldeatination ‘mex) then

(determine-horz-pos connecting DEPARTURE)
(determine-horz-distance departure arrival LAYOVER)
(if (and (right-of? departure arrival)

(left-of? layover ‘4)) then
(determine-height flight COST1)
(deterndne-height connecting COST2)
(stack-heights costl cost2 TOTAL)
(if (shorter? total ‘5) then

(repeat
(search-object-with-label flight SEAT1)

until (shaded? seatl))
(read-label seatl SEATNUN1)
(repeat

(search-object-with-label connecting SEAT2)
until (shaded? seat2))
(read-label seat2 SEATNUM2)
(if (and seatl seat2)

(setq looking nil)]

Fig, 12. Final perceptual airline reservation procedure.

(NESTED (PRESENTATION (flight ((Origin Labels] (Destination Labels)
(Departure HorzPos) (Arrival HorzPos)
(Cost Height) (Availability Shading))
<rectangle>)

(PRESENTATION2 (seat ((Availability Shading)) <rectangle>)))

Fig. 13. Final ~rceptual data stmcture s~cification forairline resemationtmk.

7.4 Limitations of Automated Perceptual Operator Selection

It is important to note that there exists no algorithmic strategy that always
chooses the most efficiently or accurately performed perceptual operators,
including those based on experimental observations and detailed theoretical
predictions. I am aware ofno experimental result of people using graphics
that has been successfully generalized across any one of the following user
[21], level of skill [171, practice [29], task [191, particular presentation used
[251, age [91, culture [181, or even s~ial situation [11! Each of these factors
have been shown to introduce variance strongenoughto overturn the results
of any particular experiment, making strong generalizations ofthese results
inappropriate. What wecan hopeto achieve in an automated graphic design
tool is acidified set ofoperational design principles that perform satisfacto-
rilyacross interesting tasks and graphics.

ACM Transactions on Graphics, Vol. IO, NO. 2, April 19Sl

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 137

Many task domains make use of standardized domain-specific graphic
conventions that were originally designed using intuition or criteria other
than cognitive eftlciency. Without specific knowledge of a problem domain,
an automated graphic design tool is unable to identify and select operators
that correspond to existing graphic conventions and this is a second limita-
tion of automated graph design. BOZ, like AFT [26], allows the designer to
intervene and manually select perceptual operators in order to support
existing conventions.

The human performance efficiency of a perceptual operator may be sensi-
tive to the particular data on which the operator is performed. For example,
judging the distance between two points on scale that are aligned three units
away from one another appears to be easier than if the points are aligned,
say, 39 units apart. This phenomenon occurs because some input data allow
the user to exploit more low-level perceptual capabilities such as subitizing
[221. A more reliable perceptual operator ranking system might be achieved
by making the set of rankings functionally dependent on the set of logical
facts to be displayed. That is, rather than using a fixed set of operator
rankings, a different set of rankings would be computed for each different set
of logical facts. The usefulness of such a scheme, along with its computa-
tional feasibility, is an open question.

BOZ’S perceptual operator selection component proceeds under the assump-
tion that the time to perform a perceptual operator is unaffected by any other
perceptual operators that are performed before or after that operator. That is,
the time to perform a perceptual operator is assumed to be context indepen-
dent. There are two ways in which this assumption may be invalidated.
First, while the questions of parallel perceptual operator performance re
mains open for debate, experimental observations suggest that human users
are sometimes able to obtain the results of several perceptual operators in a
time less than the sum of the observed performance times for each individual
operator [341. Furthermore, researchers have gained a partial understanding
of which combinations of perceptual operators exhibit this property. Combi-
nations of perceptual operators that achieve this property result in a greater
savings in performance efficiency. Second, experimental observations of users
in other task domains such as typing suggest that certain combinations of
operators may sometimes result in a performance time that is greater than
the sum of the individual performance times [351.

8. GRAPHIC PRESENTATION RENDERING

The rendering component translates logical facts to graphical facts and
displays them on the computer screen. The form in which the graphical facts
appear on the screen agrees precisely with the design described by the
perceptual data structure specification along with a set of general rendering
assumptions. The rendering component produces a fully rendered graphic
presentation of the graphical facts. Graphic presentations produced by the
rendering component support interactive manipulations of the graphical
objects appearing in the presentation, allowing users to effect changes in the

ACM Transactions on Graphics, Vol. 10. No. 2, April 1991

138 . S. M. Cssner

(shape obj OOl square) ■
(horzpos obj OOl 6)
(shading obj OOl black) -

10

Fig. 14. Example graphical facts.

(origin flightl17 pit)
(origin flight239 hou)
(destination flightl17 hou)
(destination flight239 mex)
(departure flightl17 10:00)
(departure flight239 15:00)
(arrival flightl17 12:50)
(arrival flight239 17:15)
(cost flightl17 179)
(cost flight239 239)
(availability flightl17 ok)
(availability flight239 ok)

(label flightl17 pit)
(label flight239 hou)
(label flightl17 hou)
(label flight239 mex)

(horzpos flightll? 10)
(horzpos flight239 15)

(horzpos flightl17 12.83)
(horzpos flight239 17.25)

(height flightl17 1,79)
(height flight239 2.39)

(shading flightl17 whiteshade)
(shading flight239 whiteshade)

Fig. 15. ‘l%anslate dairlin ereservationfacts

internally stored logical factsby making changes to the graphical displayed
facts.

8.1 Translating Logical Facts to Structured Graphical Facts

A prerequisiteto graphically rendering arbitnmysetsof logical facts onthe
computer screen is anotation for representing graphical facts that isequiva -
lent tothe notation used to express logical facts. To accomplish this, Mackin-
lay’s formalism for expressing graphical facts is used and this has been
shown to be equivalent to a logical representation of the same relational
information [26]. Mackinlay’s formulation allows Iogical facts to reexpressed
using each ofthe primitive graphical Languages given in Table 1. Graphical
facts expressed in a primitive graphical language take the following form:
(PGL (OBJECT) (VALUE)). For example, the facts in Figure 14 describe a
square-shaped graphical object that is shaded black and positioned along a
horizontal axis.

Figure 15 shows how logical facts (left side) about airline flights are
translated to graphical facts (right side) when the mapping given in the
perceptual data st.ructur especification is applied. Afinalnotation is needed -
for expressing collections of graphical facts whose structure agrees with the
perceptual data structure specification for the task. A structured graphical
fact corresponds to the “gestalt wholes” defined by the perceptual data
structure specification. For example, the facts in Figure 16 show how the
graphical facts (Figure 15) are structured according to the perceptual data
structure specification for the airline task given in Figure 13. Each struc-
tured graphical fact in Figure 16 corresponds to a single flight.

ACM Transactions on Graphics, Vol. 10, No.2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 139

(((labels flightl17 pit)
(labels flightl17 hou)
(horzpos flightl17 10)
(horzpos flightl17 12.83)
(height flightl17 1.79)
(shading flightl17 whiteshade))

((labels flight239 hou)
Fig. 16. Structured graphical facts

(labels flight239 mex)
(horzpos flight239 15.00)
(horzpos flight239 17.25)
(height flight239 2.39)

(shading flight~39 Whiteshade)))

8.2 Rendering Graphical Facts

The rendering component automatically diaplaya arbitrary setsof structured
graphical facts on the computer screen. This is accomplished by considering
each structured fact, determining the form in which it istobe presentedby
consulting the perceptual data structure specification, and rendering the
image of the fact on the screen. The rendering component uses an object-ori-
ented approach to rendering structured graphical facts. For every type of
graphical presentation object (i.e., (point), (line), (rectangle), (polygon), and
(label))there exists a corresponding display object that can be rendered on
the screen. Display objects can inherit oneormore ofa set ofdisplay methods
that render the graphical properties of a display object. Display methods are
defined for each ofthe primitive graphical languages in Table I. Forpresen-
tations thatdo not use horizontal and vertical position to encode information,
a simple displacement scheme isused to avoid occlusion of display objectsby
other display objects. Scales and guidelines are automatically computed,
drawn, and labeled using the DOMAINSETS field in the logical procedure
description. Fonts have been chosen arbitrarily and standardized. Nested
graphics are implemented by mouse-sensitive buttons that are always placed
in the lower left cornerin rectangles and polygons and immediately ontopof
points and lines. Display methods are automatically attached to the buttons
that cause the nested graphic to be rendered when the button is selected.

Figure 17 shows a fully rendered set of graphical airline facts. As specified
by the perceptual data structure specification, the presentation consists of a
single type of graphical object (i. e., a flight box) that inherits four graphical
properties (i.e., horizontal position, shading, height, and labels). Selecting
the seats button for any flight causes the nested seating chart for that flight
to be rendered. A rendered seating chart is shown in Figure 18.

The graphics generated by the rendering component support two-way
interactions between sets of logical facts and their graphical images. In
addition to being able to effect changea in a graphic presentation through
manipulations of the internally stored logical facts, the graphical objects in
the presentations can be manipulated by the user to effect changes in the set
of stored logical facts. For example, the upper, leftmost flight box in the
presentation in Figure 17 indicates that there is a flight from Pittsburgh to
JFK Airport (New York) leaving at 11:30 am, with no available seats, costing

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

140 . S. M. Casner

.

. .

.

. . .

..

.

.

.....

....

.. ..

.....

..

——

. .““Lx

$. i
.

:

. . . .

.

.

.........................

............

.

. . . .

I

.

....t 1 1 l“””””””’”””””””””””’”””

““””m:
........- :....3~

n
..

. ~

.

)“”gL._J8 ..
$
E .

....

.

:
.

a

.

-.

~.
.

-..

m.
.

m.

● .

● ✎

~
.

-..

w..

h-

i

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

A Task-Anal~lc Approach to the Automated Design of Graphic Presentations . 141

ax
Fig. 18. Rendered seating chart schedule.

$400. The user may simultaneously change the graphical and internal repre-
sentation of this information by simply mouse-selecting the flight box and
moving it to a new location, changing its shading, or increasing or decreasing
its height. Casner [6] generalizes this technique in a tool that allows users to
create customized diagraming languages that can be attached to and used
to manipulate internally stored data and knowledge representation strut-
tures,

8.3 Limitations of Automated Rendering

There are several important limitations of the automated rendering compo-
nent. First, the rendering component is incapable of rendering presentations
that make use of domain-specific conventions. For example, airline seating
charts typically orient the aircraft vertically with lower numbered seats
appearing at the top and higher number seats at the bottom. Since BOZ’S
rendering component has no knowledge of this convention, the seats are
arranged in increasing order from left to right as are the hours along the
time scale. Second, many presentations depict realistic information such as
spatial arrangements and shapes that do not encode information vital to the
task at hand but preserve many features of a real-world artifact in an
artificial representation. For example, airline seating charts typically depict
the aisle separating the two halves of the plane. Some seating charts also use
chair-shaped icons to represent seats instead of the generic box-shape used in
BOZ’S presentation. BOZ of course has no knowledge of these conventions.
Note that despite these two limitations it is still possible to locate any seat.
What may be lost is a familiarity and practice that users may have already
acquired using other conventions. Third, the art of font, typeface, and color
selection falls beyond the scope of BOZ’S current design model. Consequently,
BOZ chooses types and colors arbitrarily. This limitation is in part due to the
lack of theoretical account of how type and color directly affect perceptual
task performance. As theory-based typographic and color selection principles
become available, they too could be integrated into BOZ’S task-analytic
design approach.

9. COGNITIVE ANALYSIS OF THE AIRLINE SCHEDULE GRAPHIC

Table VIII summarizes the potential cognitive advantages of the airline
schedule graphic. The advantages occur in two forms that agree precisely
with the design goals of BOZ: (1) substituting efficient perceptual inferences

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

142 ● S. M. Cesner

Table VIII. Predicted Cognitive Efficiencies of the Airline Graphic

Computation
Substitutes a distance judgernerrt (dete rmine-horz-pos) in place of subtracting numerically expressed
departure and arrival rimes (computeLayover).

Substitutesa shade judgement (shaded?) for rcadmg the words “ok” and “full” (avai lable?).

Substitutes judging the combined heights of two flight boxes (stack-heights) for adding two
numerically expressd costs (addCost s).

Search
Eliminates eye movements when looking up time, city, cost, and availability information since this
information is represented in the same spatial Iocatity (a sirgle flight box).

Allows uscmto limit heir search for connecting flights to only those flights that appear to the right of the
originating flight.

Since shadtng can be processed pre-attentively, users may immediately exclude from their search any flight
square that has no available scats.

Allows users to immdlately rule out “MD” flights from their search since these are likely to violate the
cost constraint.

When looking for an available seat, users can immediately eliminate shaded seats. Users can ah restrict
theirsearch to window or aisle scats by following simple eye movemerr[patterns.

in place of more demanding logical inferences, and (2) reducing the number
of items considered when searching for needed information. The advantages
are explained by comparing how the task is performed using both the graphic
presentation and a tabular presentation of the same information.

It is important to note that the hypothesized advantages of any BOZ-
designed graphic depend on the user understanding and being able to per-
form the perceptual procedure supported by that graphic. Whether or not real
users can or actually do follow the designed perceptual procedure and the
extent to which the predicted efllciency advantages are reflected in users’
performance is an empirical question to which we now turn our attention.

10. USERS’ PERFORMANCE WITH THE AIRLINE GRAPHIC

Casner and Larkin [81 describe an experimental study designed to determine
the extent to which the hypothesized advantages of the airline graphic listed
in Table VIII were reflected in users’ performance. To better understand the
contribution made by each hypothesized advantage, a sequence of four graph-
ics was designed in which each successive graphic provided an additional
opportunity to substitute a perceptual for logical operator and an additional
opportunity to reduce search. The final presentation in the sequence con-
tained all of the efilciency advantages listed in Table VIII (except those
pertaining to the seating chart presentation). The four experimental graph-
ics, herein called Graphics 1, 2, 3, and 4, are shown in Figure 19.

ACM Transactions on Graphics, Vol. 10, No, 2, April 1S91.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 143

Response times were collected from 7 participants who performed the
airline reservation task using the four graphics a total of 10 times each (40
trials total). Users completed the task after receiving an explanation of the
conventions used in each graphic and one practice trial. The order in which
the graphics were presented to the users was varied systematically to evenly
distribute effects due to learning and practice,

The results shown in the graphic in Figure 20 indicate significant differ-
ences in response times between Graphics 1 and 2, and between Graphics 2
and 3, but not between Graphics 3 and 4. The data suggest that time scale
encoding used in Graphic 2 (and also in Graphics 3 and 4) reduced the
amount of time required to locate two connecting flights and to determine
whether or not two flights obey the layover constraint. Allowing users to
perform the perceptual operator of determining the shade of a flight box
(Graphic 3) also resulted in a significant savings. The perceptual task of
determining whether or not two flights obey the cost constraint by judging
the heights of the flight squares did not result in any reliable savings over
the task of adding the two numbers or in narrowing down the search space of
flights to consider. An analysis of the standard deviations in response times
suggests that users exhibited significantly more stable performance between
Graphics 1, 2, and 3 in that order.

Our next step was to understand how users obtained the efllciency savings
we observed. We ran a regression analysis on the number of times each
operator must be performed using each graphic, the number of facts searched,
and the observed users’ response times. We obtained the best fitting models
when each graphic was combined with the procedures that used all of the
operator substitutions and search reductions that were applicable to that
graphic. This suggests that for each graphic users took advantage of all of the
operator substitutions and search reductions that were possible with that
graphic. The beta-coefficients in the regression model yielded estimates on
performance time for several of the individual perceptual and logical
operators.

–The time required to fix the eye on each item in a graphic was uniformly
about 330 ms for all four graphics.

– Perceptually estimating layovers (determine-horz-dktance) using Graphics
2, 3 and 4 proceeded about 2 s faster than subtracting the numerically
expressed times (computeLayover).

–Judging the combined heights of two flight boxes (stack-heights) in Graphic
4 was negligibly 100 to 300 ms slower than adding the numerically
expressed costs (addCosts).

The savings gained through substitution of perceptual for logical operators
and use of search reductions match well with the global reductions observed
in overall response times. Overall the results agree with users’ comments
after using all four graphics: Graphics 3 and 4 were the most effective. The
interested reader can find details of the experimental design and methodol -
ogy in Casner and Larkin [81.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

144 ● S. M. Caener

~=t(m *,*mv * _m
Auimi

ALB-MEX ok $219 l:15pm fi50pm

PIT-ORD ok $129 lo:ooam 12:OOpm

PIT-HOU full $i99 915arn 205pm

ORD-IJA.L full $199 l:OOpm &30pm

DAL-MEX ok $229 Z30pm 1O:90pm

PIT-ALB ok $219 8ooam ll:50am

BAL-MEX full $279 3:50pm 9:50pm

JFK-MEX ok $229 300pm 6oopm

PIT-JFK full $239 95oam 1230pm

(a)

::: :’:
::: ,:. E@%l

:::: ::: ;:::

::;E%JI::
:::: :::.,

,, ::, ,:: ,::,

.,,
::: ::: :;., ::

,.
:::,.

:::
:::
:::,,,
::,

E!EiJ,.
‘, :,,:

89101112123456 78910111212
AM N420N Pm MIDNIGHT

(b)

Fig. 19. Four experimental graphics for airline reservation. (a)Graphic. (b) Graphic
Graphic 3. (d) Graphic 4.

11. GENERAL DISCUSSION

The research described above

2. (c)

explores a task-analytic approach to the design
of graphics in which graphic pre&ntations are viewed as ‘perceptually man~p-
ulated data structures that help streamline task performance in the same
way that abstract data structures and their associated procedures help expe-
dite abstract computational processes. The important distinction made in

ACMTransactions on Graphics, Vol. 10, No, 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 145

:’: :“:,,

r I I 1 I I I 1 I I I 1 I I I I n
8
AM

—

9 10 11 12

mPIT lFI<

nFIT. HOU

L.....–J

2 4567891011121
PM MIDNIQHT

(c)

ALB-MEY
I

,:
::
,,

Pl T-CY=W
4

1

1 I I I I I I I I I I I I 1 I I I 1 1

89101112123456 78910111212
Ml NoON PM MIDNIGHT

(d)

Fig. 19– Continued

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

R
E

S
P

O
N

S
E

.lM
E

20

19

IO

12

16

15

14

13

12

11

10

9 8 7 6 5 4 3 2 1 0
D

IS
PL

A
Y

1
D

IS
PL

A
Y

2
D

IS
PL

A
Y

3
D

ls
pL

A
Y

l

G
R

A
P

H
K

.U
S

E
D

F
ig

.
20

.
P

ar
tic

ip
an

ts
’

m
ea

n
re

sp
on

se

tim
es

fo

r
ai

rli
ne

re

se
rv

at
io

n
ta

sk
.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 147

task-based graphic design is that the effective use of perceptual data struc-
tures, as with abstract data structures, depends on designing the right
structure for a given task. That is, the utility of a presentation is linked to
the nature of the task to be supported more than the characteristics of the
information to be presented. Consequently, the design methodology embodied
in BOZ proceeds by analyzing a user task and generating equivalent percep-
tual tasks that can be performed more efficiently by humans. The design of
an accompanying graphic is targeted primarily at supporting eficient and
accurate human performance of the perceptual task. The examples and
experimental results show how the task-analytic approach can be success-
fully applied to designing effective perceptual tasks and presentations that
provide two types of advantages: (1) allowing users to substitute quick
perceptual inferences in place of more demanding logical inferences, and (2)
reducing user’s search for needed information.

Design of Effective Graphic Presentations. What are the real graphic
design successes of BOZ? Has BOZ produced a graphic that no one else has
designed before? Given its current set of perceptual operators and graphical
presentation objects it is unlikely that BOZ will produce new graphic designs
that differ radically from existing designs. That is, in the examples developed
in this paper, no graphic seems to contain a shape or a configuration of
shapes that strikes the reader as being completely novel, or having never
appeared in a graphic used in one domain or another. This comes as little
surprise as the study of novel graphical elements and their mathematical
properties enjoys centuries of prior investigation. Rather, the contribution of
the present version of BOZ lies in forming compositions of existing designs to
arrive at presentations that gather the task-supportive features of several
individual designs in order to arrive at “customized” presentations that
support the operators in a target user task. It is important to note that the
degree of customization achieved by each presentation is more than a simple
collection of useful presentations implicated by a task description. Rather,
BOZ is additionally able to assign degrees of importance to the individual
operators in a task and use this information to make sacrifices in less
important aspects of a task to facilitate efllcient perceptual processing in
more demanding aspects of the same task.

BOZ has thus far been used to design graphics for the five airline reserva-
tion tasks given above, a computer operator task, a class scheduling problem,
and simple charts and graphs such as those found in the popular literature.
The interested reader can consult Casner [71 for these examples along with
the complete task descriptions from which the graphics were generated.
Future work will attempt to apply BOZ to more challenging information-
processing tasks and in a wider variety of task domains. These efforts should
lead to a more sophisticated understanding of how the problems of task
analysis and graphic design interact, as well as novel ways of extending
BOZ’S capabilities.

Learning Graphical Conventions and Procedures. An important aspect of
the utility of a graphic not addressed by BOZ is the time required to

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

148 ● S. M. Casner

understand the procedures that must be followed to use that graphic success-
fully. There seem to be no inherent advantages of learning a perceptual
procedure instead of a logical one even if that perceptual procedure is
eventually performed more efficiently or accurately. The learning issue is
relevant when graphics are presented in “walk up and use” situations where
it is unsafe to assume prior knowledge or skill on the part of the user.
Learning issues are less important in skilled performance task situations.
The idea of using different graphics to support different tasks may further
require the user to learn several different sets of graphic conventions. For
example, the airline graphics in Figures 1, 2, 3, 4, and 17 all require the user
to manipulate the same information in different ways.

Two arguments can be made in defense of BOZ with respect to the learning
issue. First, the individual graphical conventions that follow from BOZ’S
current repertoire of graphical presentation objects and perceptual operators
do not extend beyond what is used in popular graphic presentations in
current use. Even though each of the airline schedule graphics are somewhat
unique, they are all composed using familiar conventions such as aligning
data values along horizontal and vertical scales, and color coding. Conse-
quently, the learning requirements for BOZ-designed graphics extend beyond
those of existing graphics only in that the user must understand novel
combinations of familiar perceptual operators. Second, since there is a cost
associated with learning to use any artifact, in each situation we must ask
whether or not the artifact offers benefits to the user that justify the learning
cost. Taking airline scheduling as a case in point, if the graphical airline
schedules result in allowing customers to gain control of their own flight
scheduling, the benefits may far outweigh the initial learning costs.

Real-Time Automated Graphical Presentation. Aside from an articulation
of a cognitive theory of graphic presentation design, BOZ appears potentially
useful as a tool for the automated design and generation of graphic presenta-
tions in computer information systems. However, two limitations of the
present model prevent BOZ’S current use in real-time applications. First, the
logical task descriptions required by BOZ as input must presently be hand-
generated. A future research topic is to investigate ways of automatically
generating task descriptions and eliminating the need for human interven-
tion. SAGE [27] uses a discourse processor that allows descriptions of simple
operators to be generated by analyzing simple natural language queries
made by the user. However, this approach is unable to generate descriptions
of complex procedures defined using collections of many operators. Second,
while the run time complexity of BOZ may theoretically be able to meet the
demands of on-line information systems, the present implementation fails to
produce graphics in a time that would be considered acceptable by computer
users. The rendering component is particularly slow for graphics containing
many graphical objects. The search complexity for BOZ’S perceptual operator
substitution component is presently: TOw,.tO,,U~~titUtiO~= n*c*t, where n is the
number of logical operators appearing in a procedure, c is the number of
possible operator classes that each logical operator must be matched against,

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 149

and t is the time required to find all matches for a single operator. The Xerox
1186 implementation of BOZ required about 9 s to classify the airline
reservation task operators, as shown in Figure 7. BOZ’S perceptual data
structuring component is linear in the number of logical operators n and
domain sets d: Td~ti structuring = n*d. BOZ required about 2 s to design the
initial perceptual data structure shown in Figure 11. The perceptual operator
selection component runs n2 in the number of logical operators. The percep-
tual operator selection component required 7 s to select the perceptual
procedure and data structure shown in Figures 12 and 13. The object-
oriented rendering component is linear in the number of structured facts
to be presented f and the number of primitive graphical languages p
appearing in each structured fact: Tr,~d,ri~~= pp. The rendering component
required approximate y 12 s to render the flights presentation in Figure 17
and approximately 1 rein, 15 s to generate the seating chart presentation in
Figure 18.

Overall, BOZ designed both presentations in about 18 s, rendering the
flights and seating charts presentations after 30 s and 1 rein, 45 s, respec-
tively. BOZ’S current run time does not fall within an acceptable standard for
real-time data presentation. A future research topic is to investigate ways of
making BOZ operate more efficiently.

Executable hgical and Perceptual Procedures. BOZ contains an addi-
tional component that allows the logical procedures and the perceptual
procedures produced by BOZ to be compiled into executable simulations.
These simulations manipulate databases of logical and graphical facts such
as those shown in Figures 6 and 16. The simulation component allows
alternative procedures to be executed while the number of operator firings
and items searched are counted for any combination of logical or perceptual
procedure and graphic. These measures can be used to obtain detailed
quantitative predictions on the effectiveness of any procedure and graphic
produced by BOZ and may avoid the need to perform time-consuming experi -
mental studies with real users such as the one described in Section 10.
Casner [71 uses the simulation component to explore other cognitive advan-
tages of graphic presentation-based task performance and problem solving
and to better understand the details of how efllciencies in inferencing and
search are obtained through the use of graphic presentations.

ACKNOWLEOGMENTS

1 thank Jill Larkin, Stellan Ohlsson, Ken Koedinger and three anonymous
reviewers for their contributions to this research.

REFERENCES

1. ASCH, S. E. Studies of independence and submission to group pressure: A minority of one
against a unanimous majority. Psychological Monographs, 1956, 70.

2. BERTIN, J. Semiology of Graphics, W. Berg (’1’ransl). Univ. of Wisconsin Press, Madison,
1983.

3. BRACHMAN,R. J., AND SCHMOLZE, J. G, An overview of the KL-ONE knowledge representa-
tion system. Cognitiue Sci. 92, (1985), 171-216.

ACM Transactions on Graphics, Vol. 10, No. 2, April 19S1.

150 . S. M. Casner

4. BRAINERD,W. S., ANDLANDWEBER,L. H. Theory of Computatwn, Wiley, New York, 1974.
5. CARD,S. K., MorIAN,T. P., ANDNEWELL,A. The Psychology of Human-Computer Interac-

tion. Lawrence Erlbaum, Hilledale, N. J., 1983.
6. CASNER,S. M. Building customized diagraming languages. In Visual Languages and

Visual Programming, S. K. Chang Ed. Plenum Press, New York, 1990.
7. CASNER,S. M. Z’aslt-Analytic Design of Graphic presentations. Ph.D. dissertation, Intelli-

gent Systems Program, Univ. of Pittsburgh, Aug. 1990.
8. CASNER,S. M., AND LARKIN J. H. Cognitive efficiency considerations for gmd graphic

design. In Prac. 11th Annual Conf. Cognitive Science Society (Ann Arbor, Mich., Aug. 1989).
9. CLANCEY,S. M., ANDHOYER, W. J. Effects of age and skill on domain-specific visual search.

In Proc, 9th Annual Conf. Cognitiue Science Society, (Seattle, Wash., 1987), 398-404.
10. CLEVELAND,W. S. Elements of Graphing Data. Wadsworth Advanced Books and Software,

Monterey, Calif., 1985.
11. CLEVELAND,W, S., AND McGmL, R. Graphical perception Theory, experimentation, and

application to the development of graphical methods. J. Amer. Stat. Assoc. 79, 387 (Sept.
1984), 531-554.

12. DAVIDOFF, J. B. The role of colour in visual displays. Znt. Rev. Ergonomics 1, (1987),
21-42.

13. FALLSIDE,D, Understanding machines in motion. Ph.D. dissertation, Dept. of Psychology,
Carnegie Mellon Univ., Pittsburgh, Pa., May 1988.

14. FEINER,S. APEX: An experiment in the automatic creation of pictorial explanationa. IEEE
Comput. Graph. AppL (Nov. 1985), 29-37.

15. FRIEDELL,M. Context-sensitive, graphic presentation of information. Comput. Graphic. 16
3, (July 1982), 181-168.

16. GNANAMGARI, S. Information presentation through default displays. Ph.D. dissertation,
Univ. of Pennsylvania, May 1981.

17, HEGARTY,M., AND JUST, M. Understanding machines from text and diagram. In KIwwl-
edge Acquisition from Text and Picture, H. Mandl and J. Levin Eds., North-Holland,
Amsterdam, 1988,

18, HUDSON,W. The study of the problem of pictorial perception among accultured groups. Int.
J. Psychology 2 (1968), 89-107.

19. JARVENPAA, S. L., AND DICKSON, G. W. Graphics and managerial decision making Re-
search Based Guidelines. Commun. ACM 31, 6 (June 1988), 764-774.

20. JENKS,C. F.,ANDKNoa, D. S. The use of shading patterns in graded series. Ann. Assoc.
Am. Geographers 51 (1961) 316-334.

21. KIERAS,D., ANDPONON, P. G. An approach to the formal analysis of user complexity. Znt.
J. Man-Mmh. Stud. 22 (1985), 365-394.

22. KLAHR, D. Quantification processes. In Visual Informatwn Processing, W. G. Chase Ed.,
Academic Press, Orlando, Fla, 1973, pp. 3-34.

23. KOEDINGER,K. R.,AND ANDERSON, J. R. Abstract planning and perceptual chunks: Ele-
ments of expertise in geometry. Cognitive Sci. 14, 4 (1990), 511-550.

24. LARKIN, J., AND SIMON, H. Why a diagram is (sometimes) worth 10,000 words. Cognitive
Sci. 11 (1987), 65-99.

25. LUSK, E. J., AND KERBNICK,M. The effect of cognitive style and report format on task
performance: The MIS design consequences. Manage. Sci. 22, 3 (1979), 787-798.

26, MACKINLAY,J. “Automating the design of graphical presentations of relational informa-
tion.” ACM Trans. Graph. 5,2 (Apr. 1966), 110-141.

27. ROTH,S. F., MAmTs, J., ANDMESNARD,X. Graphics and natural language as com~nents of
automatic explanation. In Architectures for Intelligent Interfaces: Elements and Prototypes,
J. Sullivan and S. ~ler Eds. Addison-Wesley, Reading, Mass., 1989.

28. SCHMID,C. F. Statistical Graphics: Design Principles and Practices, Wiley, New York,
1983.

29. SCHNEIDER,W. Training high-performance sklllx Fallacies and guidelines. Hum. Factors
27, 3 (1985), 285-300.

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

A Task-Analytic Approach to the Automated Design of Graphic Presentations . 151

30. STEVENS, S. S. On the theory of scales of measurement. Science 103, 2664 (June 1946),
677-680.

31. TEGHTSOONIAN,J. The judgement of size, Am. J. Psychology 78 (1965), 392-402.
32. TUFTE, E. R. Enui.sioning Znformatwn. Graphics Press, Cheshire, Corm., 1990.
33. TUFTE,E. R. The Visual Display of Quantitative Information. Graphics Press, Cheshire,

Corm., 1983.
34. ULLMAN,S. Visual routines. Cognition 18 (1964), 97-159.
35. YAMADA, H. An analysis of the standard English keyboard. Tech. Rep. 80-11, Dept. of

Information Science, Univ. of Tokyo, 1980.
36. ZDYBEL,F., GREENFIELD)N, R., YONKE, M.D., AND GIBBONS, J. An information presentation

system. In Proceedings of the 7th Internatwnal Joint Conference on Artificial Intelligence
(Aug. 1981), 978-984,

Received May 1989; revised December 1989; accepted September 1990

ACM Transactions on Graphics, Vol. 10, No. 2, April 1991.

